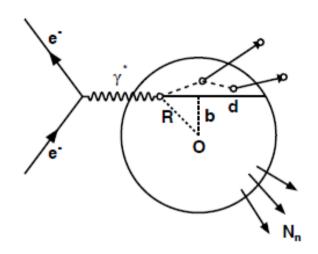
eRD17: BeAGLE

A Tool to Refine Detector Requirements for eA in the Saturation Regime

M.D. Baker*
MDBPADS Consulting

E.C. Aschenauer, J.H. Lee Brookhaven National Laboratory

L. Zheng China University of Geosciences (Wuhan)


18-Jan.-2018

*-contact person

Executive summary

- What we learned: The "Lore" is Backwards!
 - Evaporation neutrons (ZDC) are NOT enough to tag coherent vs. incoherent diffraction. (from 7/2017)
 - Evaporation neutrons CAN tag collision geometry for incoherent diffraction.
- Communicating with EIC users
 - JLAB + BNL/SBU + PoETIC8-MC
- The BeAGLE project
 - Improved diffraction implementation in progress.

Key Features of BeAGLE

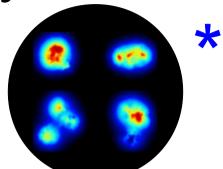
Multistep process.

Hard interaction (DIS or diffractive) involving one or more nucleons.

Intra Nuclear Cascade w/ Formation Zone

Excited nuclear remnant will decay: Fission &/or evaporation of nucleons De-excitation by gamma emission.

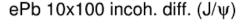
Reasonable model of both hard process AND nuclear interaction.

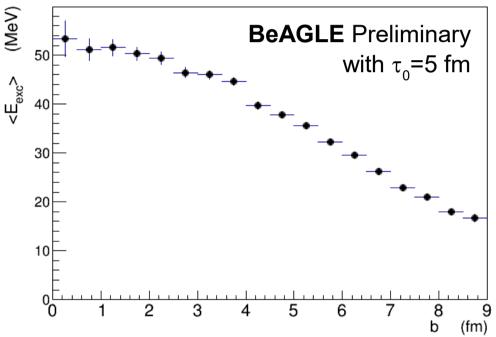

Improvements (already) from white paper diffraction studies:

More correct (lower) value of <E_{exc}>

Added b-dependence of E_{exc}, increasing fluctuations.

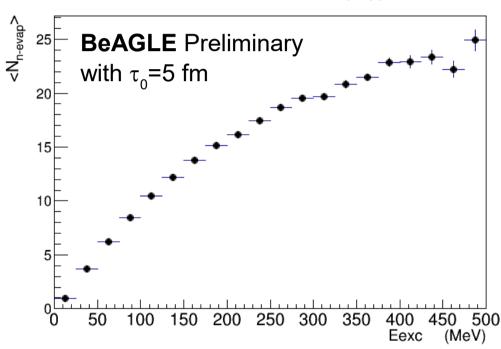
Incoherent diffraction as physics

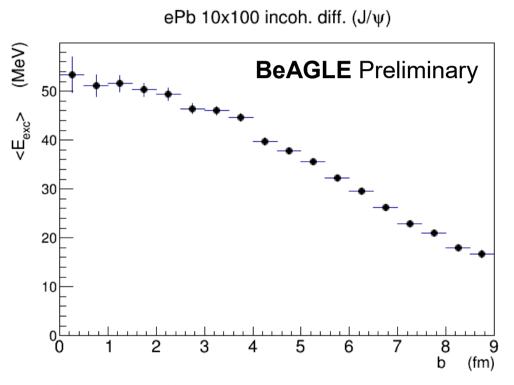

- Sensitive to shape fluctuations
 - We already see "hot spots" in the proton
 - Are these the same inside a nucleus?
- Geometry tagging of incoherent events?
 - Are nucleon shapes in the middle of the nucleus different than those at the edges?
 - LORE: Can't be done with evaporation neutrons because the excited nucleus "forgets" history.



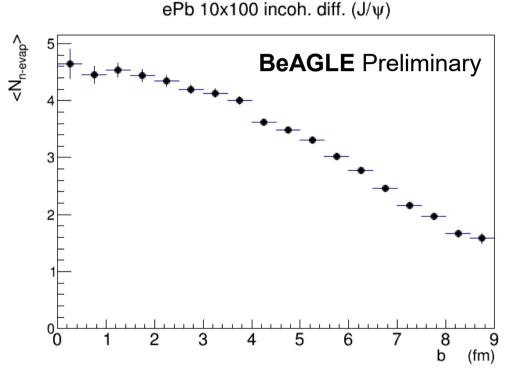
^{* -} Example theoretical proton fluctuation configuration tuned to match ep incoherent diffractive data - from B. Schenke

The nucleus remembers!


Energy conservation!

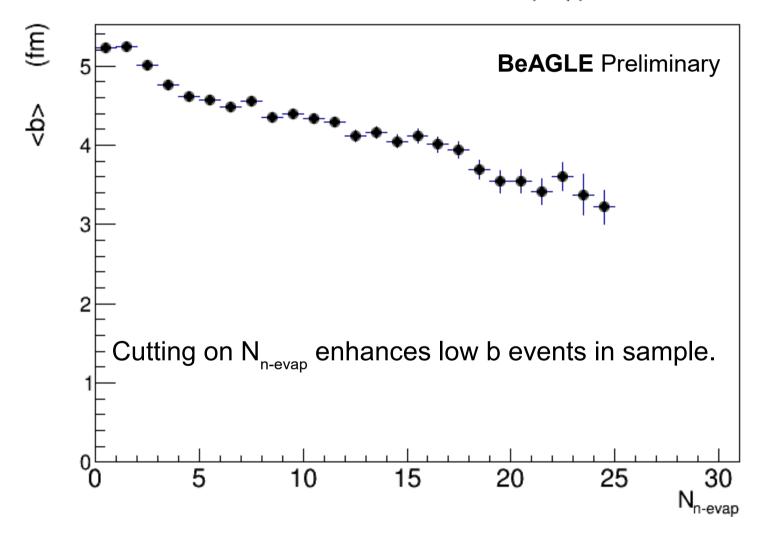

Central diffractive events excite the nucleus more than peripheral.

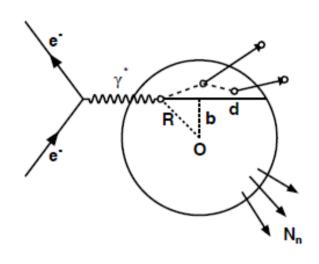
ePb 10x100 incoh. diff. (J/ψ)



The hotter (more excited) remnant nuclei emit more evaporation neutrons – which we can detect!

ZDC & impact parameter correlated


Central diffractive events excite the nucleus more than peripheral.


The hotter (more excited) remnant nuclei emit more evaporation neutrons – which we can detect!

ZDC can tag impact parameter!

ePb 10x100 incoh. diff. (J/ψ)

A paradox?

Incoherent diffraction:

How can the ZDC do: a GOOD job at geometry tagging but a BAD job at vetoing?

The # of evaporation neutrons is much smaller (on average) for peripheral than central events.

So we can tell them apart.

But some peripheral events slip by w/ N_{nevap}=0!

Still following your advice

From the July 2015 EIC R&D Committee Report:

Recommendation: ...

The committee encourages regular interaction between the developer[s] and the expected user community.

July 2017: Special Nuclear Physics Seminar (JLAB)

Dec. 2017: Center for Frontiers in Nuclear Science Seminar

(SBU/BNL)

Mar. 2018: Physics Opportunities at an ElecTron-IonCollider 8

(POETIC8) Satellite workshop: MCEGs for future ep

and eA facilities (Regensberg, Germany)

Note: Also starting work on a PRD (Elke & Liang taking the lead).

Fermi momentum & eN collision W²

BeAGLE (& DPMJET & Pythia) use on-mass-shell nucleons which sit in a mean-field nuclear binding + Coulomb potential.

In nuclear target rest frame:

$$Q^{\mu} = \{v; 0, 0, sqrt(v^2+Q^2)\}$$
 defined by lepton – nuclear kinematics

$$P^{\mu} = \{M; 0, 0, 0\} \text{ OR } \{M + E_{kF}; p_{xF}, p_{yF}, p_{zF}\}$$

Fermi momentum & eN collision W²

BeAGLE (& DPMJET & Pythia) use on-mass-shell nucleons which sit in a mean-field nuclear binding + Coulomb potential.

In nuclear target rest frame:

$$Q^{\mu} = \{v; 0, 0, sqrt(v^2+Q^2)\}$$
 defined by lepton – nuclear kinematics

$$P^{\mu} = \{M; \ 0, \ 0, \ 0\} \quad OR \quad \{M + E_{kF}; \ p_{xF}, \ p_{yF}, \ p_{zF}\}$$

$$W^{2} = (P+Q)^{2} = 2Mv - Q^{2} + M^{2} \qquad (+2vE_{kF} - 2sqrt(v^{2}+Q^{2})p_{zF})$$

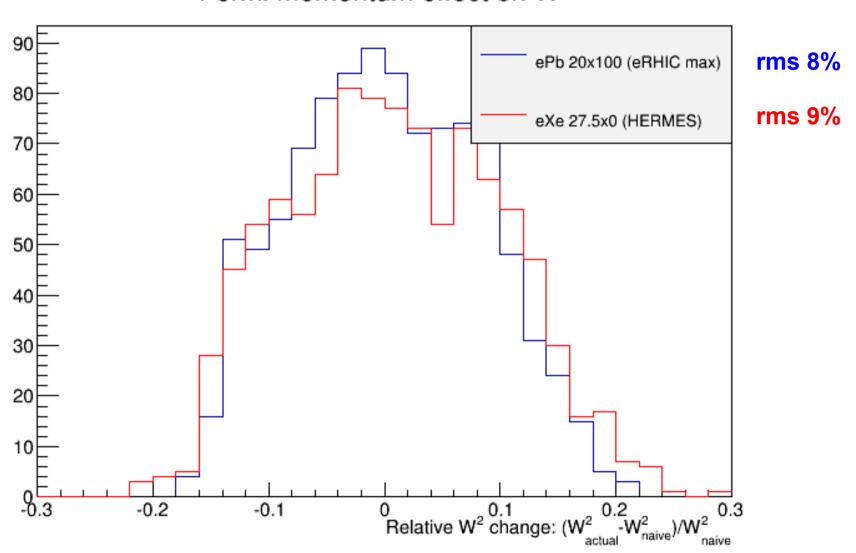
Fermi momentum & eN collision W²

BeAGLE (& DPMJET & Pythia) use on-mass-shell nucleons which sit in a mean-field nuclear binding + Coulomb potential.

In nuclear target rest frame:

$$Q^{\mu} = \{v; 0, 0, sqrt(v^2+Q^2)\}$$
 defined by lepton – nuclear kinematics

$$P^{\mu} = \{M; \ 0, \ 0, \ 0\} \quad OR \quad \{M + \textbf{E}_{kF}; \ \textbf{p}_{xF}, \ \textbf{p}_{yF}, \ \textbf{p}_{zF}\}$$


$$W^{2} = (P+Q)^{2} = 2Mv - Q^{2} + M^{2} \qquad (+2vE_{kF} - 2sqrt(v^{2}+Q^{2})p_{zF})$$

High v limit (v >> M,Q):

$$W^2 \sim 2M_V (1 - p_{zF}/M)$$
 (note that $E_{kF} << p_{zF}$)

W² smearing for two extremes

Fermi momentum effect on W2

Updated table format

The past is prologue!

				\sim	
Feature added or error corrected	DPMJet Hybrid	BeAGLE 1/2017	BeAGLE 6/2017	BeAt LE 7/201	BeAGLE (planned)
Hard processes correct.	YES	YES	YES	YES	YES
2. Tuned to ZEUS ep→p+X data	YES	YES	YES	YES	YES
3. IntraNuclear Cascade	YES	YES	YES	YES	YES
4. Nuclear evaporation/breakup	YES	YES	YES	YES	YES
5a. Multinucleon shadowing	NO	YES	YES	YES	YES
5b. Debug multinucleon shadow.	NO	NO	YES	YES	YES
6a. Correct nucleon remnant (n/p)	NO	YES	YES	YES	YES
6b. Debug Ma vs. Mp	NO	NO	YES	YES	YES
7. Correct eA target rest frame	NO	YES	YES	YES	YES
8. Tuned to E665 μPb→n+X data	YES	YES/NO	YES	YES	YES
9. Shadowing coherence length	NO	NO	NO	No	YES
10. Partial shadowing effect	NO	NO	NO	VEC	YES
11. Process-specific A dependence	NO	NO	Next Year	Next Year	FY2018
12. Tuned to more E665 μA data	NO	NO	Progress	Progres	FY2019
13. FS p _F for hard process correct	NO	NO	NO	NO	YES

From July 2017 meeting

Feature added or error corrected	BeAGLE 07/2017	BeAGLE 12/2017	BeAGLE (planned)
1-8. Early BeAGLE features (see text)	YES	YES	YES
9 Shadewing coherence length	NO	NO	YES
10. Partial shadowing effect	YES	YES	YES
11a. Effective σ_{dipole} for J/ ψ averaged over x & Q^2	YES	YES	YES
11b. Effective σ_{dipole} for ϕ averaged over x & Q^2	NO	YES	YES
11c. Eff. $\sigma_{\text{dipole}}(x,Q^2)$ for $V=\psi,\phi,\rho,\omega$ from Sartre (eP) NO	NO	YES
11d. Use correct R _{diff} (A=208)(x,Q ²) for V from Sartre	NO	NO	YES
11e. Improved σ _{dipole} for V, if necessary	NO	NO	YES
12. Tune to E665 μA Streamer Chamber data	NO	NO	YES
13. FS p _F for hard process correct	NO	(Testing)	YES
14 Kinematic matching between DPMJet&Pythia	NO	YES	YES
15. Protect against very high E _{exc} values.	NO	YES	YES
16. Enable nPDF with any value of A,Z (EPS09)	NO	YES	YES
17. Extend $R \rightarrow \sigma_{dipole}$ map to more values of A	NO	NO	YES
18. Tune the t distribution for multiple scattering.	NO	NO	YES
19a-c. Install, test, & release BeAGLE/RAPGAP	NO	NO	YES
20. Implement UltraPeripheral Photon Flux	NO	NO	YES
21. Tune BeAGLE to UPC data (RHIC &/or LHC)	NO	NO	YES

Table 1. Technical accomplishments and plans through FY2019.

Progress since last meeting

Feature added or error corrected	BeAGLE 07/2017	BeAGLE 12/2017	BeAGLE (planned)
1-8. Early BeAGLE features (see text).	YES	YES	YES
9. Shadowing coherence length	NO	NO	YES
10. Partial shadowing effect	YES	YES	YES
11a. Effective σ_{dipole} for J/ ψ averaged over x & Q ²	YES	YES	YES
11b. Effective σ_{dipole} for ϕ averaged over x & Q^2	NO	YES	YES
11c. Eff. $\sigma_{dipole}(x,Q^2)$ for $V=\psi,\phi,\rho,\omega$ from Sartre (ePb)	NO	NO	YES
11d. Use correct R _{diff} (A=208)(x,Q ²) for V from Sartre	NO	NO	YES
11e. Improved σ _{dipole} for V, if necessary	NO	NO	YES
12. Tune to E665 µA Streamer Chamber data	NO	NO	YES
13. FS p _F for hard process correct	NO	(Testing)	YES
14. Kinematic matching between DPMJet&Pythia	NO	YES	YES
15. Protect against very high E _{exc} values.	NO	YES	YES
16. Enable nPDF with any value of A,Z (EPS09)	NO	YES	YES
17. Extend $R \rightarrow \sigma_{dipole}$ map to more values of A	NO	NO	YES
18. Tune the t distribution for multiple scattering.	NO	NO	YES
19a-c. Install, test, & release BeAGLE/RAPGAP	NO	NO	YES
20. Implement UltraPeripheral Photon Flux	NO	NO	YES
21. Tune BeAGLE to UPC data (RHIC &/or LHC)	NO	NO	YES

18-JAN-2018

Table 1. Technical accomplishments and plans through FY2019.

Target dates

Feature added or error corrected		BeAGLE 12/2017	BeAGLE (planned)
1-8. Early BeAGLE features (see text).	YES	YES	YES
9. Shadowing coherence length	NO	NO NO	YES
10. Partial shadowing effect	YES	YES	YES
11a. Effective σ _{dipole} for J/ψ averaged over x & Q ²	YES	YES	YES
11b. Effective σ _{dipole} for φ averaged over x & Q ²		YES	YES
11c. Eff. $\sigma_{dipole}(x,Q^2)$ for $V=\psi,\phi,\rho,\omega$ from Sartre (ePb)	NO	NO	YES
11d. Use correct R _{diff} (A=208)(x,Q ²) for V from Sartre	NO	NO	YES
11e. Improved σ _{dipole} for V, if necessary	NO	NO	YES
12. Tune to E665 μA Streamer Chamber data	NO	NO	YES
13. FS p _F for hard process correct	NO	(Testing)	YES
14. Kinematic matching between DPMJet&Pythia	NO	YES	YES
15. Protect against very high E _{exc} values.	NO	YES	YES
16. Enable nPDF with any value of A,Z (EPS09)	NO	YES	YES
17. Extend $R \rightarrow \sigma_{dipole}$ map to more values of A	NO	NO	YES
18. Tune the t distribution for multiple scattering.	NO	NO	YES
19a-c. Install, test, & release BeAGLE/RAPGAP	NO	NO	YES
20. Implement UltraPeripheral Photon Flux	NO	NO	YES
21. Tune BeAGLE to UPC data (RHIC &/or LHC)	NO	NO	YES

Delayed. Not urgent.

FY2018

FY2018

FY2018

FY2019

Delayed. Almost ready.

FY2018

FY2018

FY2018: β by July

16

FY2019

FY2019

18-JAN-2018

Table 1. Technical accomplishments and plans through FY2019.

FY2018 milestones

- FY2018 improve diffractive description
 - Qtr1: Process-dependent cross-section:
 - (eN) diffractive events =(incoherent eA) are different than
 DIS in A-dependence and in multinucleon shadowing
 - RAPGAP in BeAGLE (as Pythia alternative)
 - Qtr2: Alpha release (code runs without crashing and results aren't obviously nuts)
 - Qtr3: Beta release (code appears to work but needs more testing)

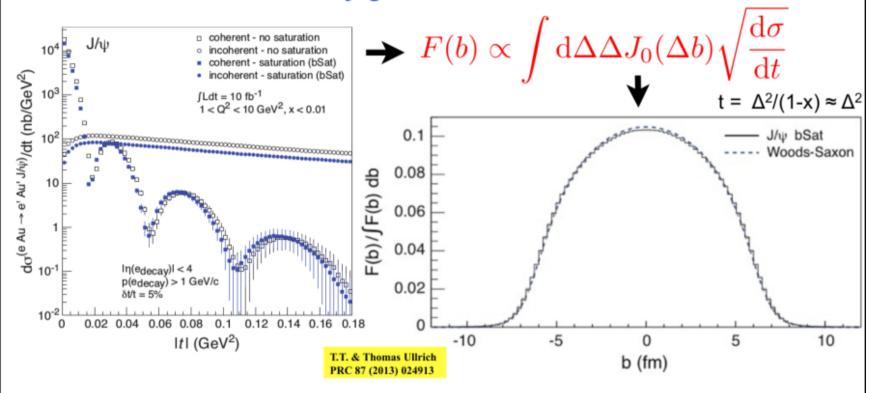
Qtr4: Release – ready for prime time

External Funding

- Salaries from home institutions:
 E. Aschenauer, J.H. Lee, L. Zheng
- JLAB LDRD: Geometry Tagging at JLEIC A. Accardi, M.D. Baker, R. Dupre, M. Erhart, C. Fogler, C. Hyde, V. Morozov (PI), P. Nadel-Turonski, K. Park, A. Sy, T. Toll, G. Wei, L. Zheng

Liang Zheng

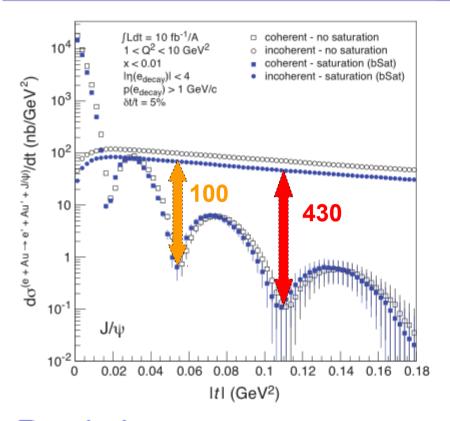
- Project focus currently on writing a paper (PRD)
- Just starting new duties as an Asst. Professor.
 - China University of Geosciences (Wuhan)
- Students may join us in Fall 2018.
- Liang ready to travel in Summer 2019.
 - Travel funds in FY2019 proposal?

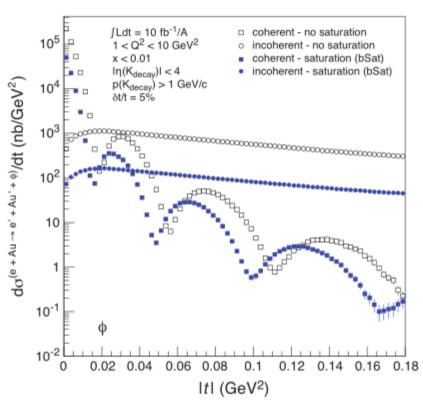

Conclusion

- The "Lore" is Backwards!
 - Evaporation neutrons (ZDC) are NOT enough to tag coherent vs. incoherent diffraction. (from 7/2017)
 - Evaporation neutrons CAN tag collision geometry for incoherent diffraction.
- Communicating with EIC users
 - JLAB + BNL/SBU + PoETIC8-MC
- The BeAGLE project
 - Improved diffraction implementation in progress.

Extras

Probing the spatial gluon distribution at EIC

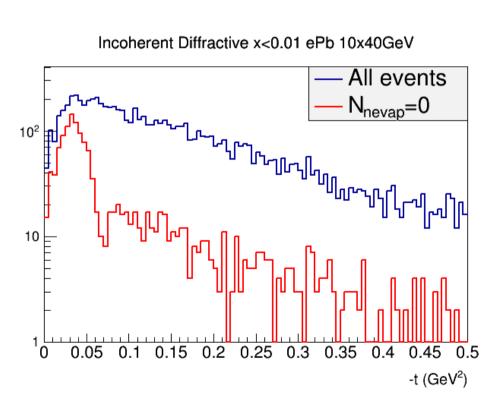

Momentum transfer t conjugate to transverse coordinate b

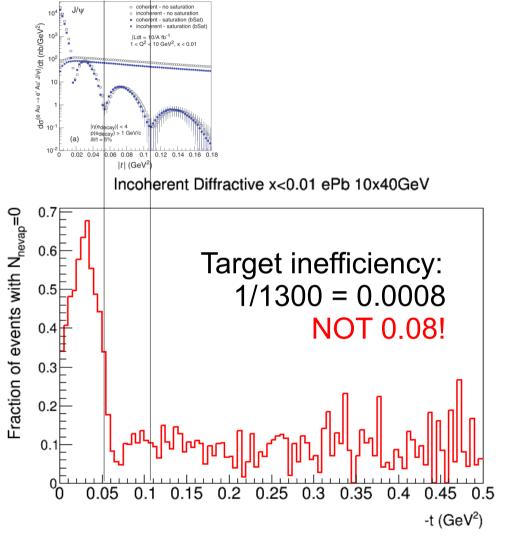


EIC will be able to retrieve the spatial gluon distribution with high precision.

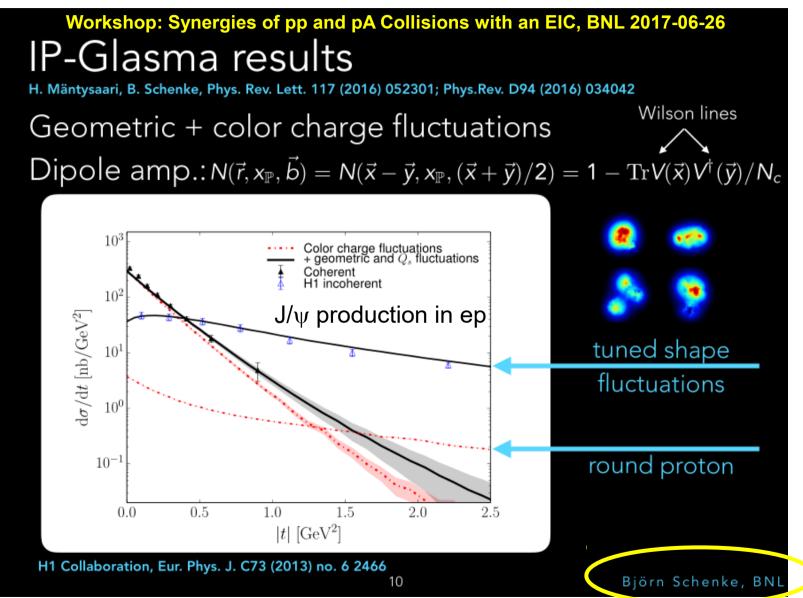
IF we can extract the coherent diffraction pattern

Starting Point

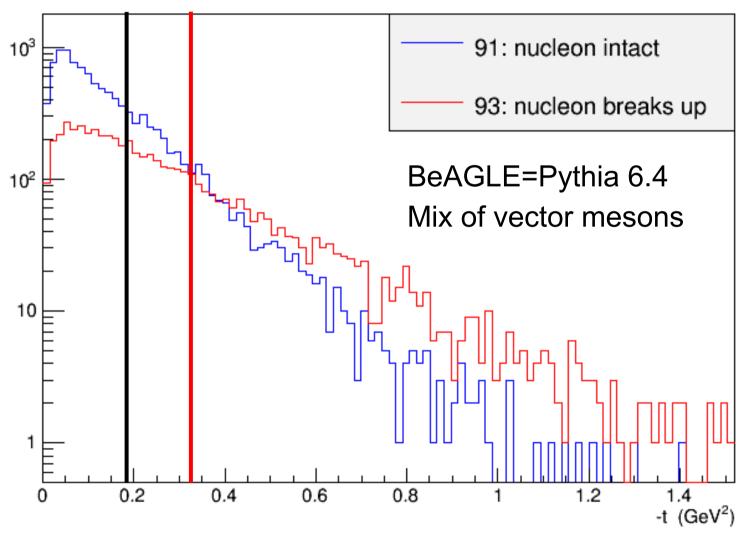



Reminder:

Toll, Ullrich PRC 87 (2013) 024913

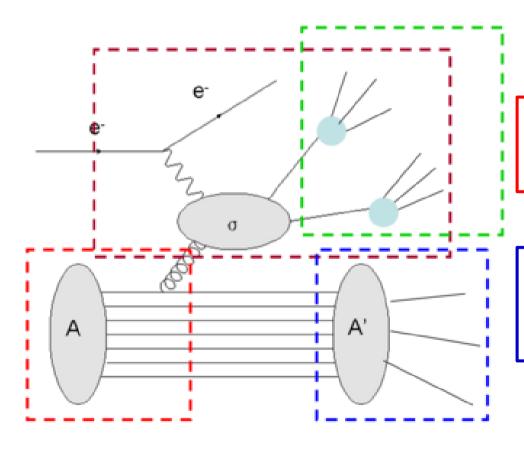

- e + Au → e' + Au + J/ψ: not sensitive to sat. effects
- e + Au → e' + Au + ф: larger wf ⇒ sensitive to sat. effects
- Sartre: uses Woods-Saxon to generate nuclei

N_{nevap} veto inefficiency



Incoh. diffraction is also interesting!

eN diffraction: $\gamma^*+N \rightarrow V+N \rightarrow V+X$


Nucleon usually stays intact for |t|<0.33 GeV²

BeAGLE Structure

Elke Aschenauer + MDB + J.H.Lee + Liang Zheng

From: https://wiki.bnl.gov/eic/index.php/BeAGLE

A hybrid model consisting of DPMJet and PYTHIA with nPDF EPS09.

Nuclear geometry by DPMJet and nPDF provided by EPS09.

Parton level interaction and jet fragmentation completed in Pythia

Intra Nuclear Cascade &

Nuclear evaporation (gamma dexcitation/nuclear fission/fermi break up) treated by DPMJet (Fluka)

Energy loss effect from routine by Accardi, Dupré Salgado&Wiedemann to simulate the nuclear fragmentation effect in cold nuclear matter is available.